WELCOME STUDENTS! FEEL FREE TO READ AND SEARCH FOR SOME LECTURES IN SCIENCE SUBJECTS. ENJOY AND HAVE FUN LEARNING SCIENCE!

Wednesday, September 8, 2010

Plant Hormones

Auxins promote stem elongation, inhibit growth of lateral buds (maintains apical dominance). They are produced in the stem, buds, and root tips. Example: Indole Acetic Acid (IA). Auxin is a plant hormone produced in the stem tip that promotes cell elongation. Auxin moves to the darker side of the plant, causing the cells there to grow larger than corresponding cells on the lighter side of the plant. This produces a curving of the plant stem tip toward the light, a plant movement known as phototropism.

Auxin also plays a role in maintaining apical dominance. Most plants have lateral (sometimes called axillary) buds located at nodes (where leaves attach to the stem). Buds are embryonic meristems maintained in a dormant state. Auxin maintains this dormancy. As long as sufficient auxin is produced by the apical meristem, the lateral buds remain dormant. If the apex of the shoot is removed (by a browsing animal or a scientist), the auxin is no longer produced. This will cause the lateral buds to break their dormancy and begin to grow. In effect, the plant becomes bushier. When a gardener trims a hedge, they are applying apical dominance.

Gibberellins promote stem elongation. They are not produced in stem tip. Gibberellic acid was the first of this class of hormone to be discovered.

Cytokinins promote cell division. They are produced in growing areas, such as meristems at tip of the shoot.

Abscisic Acid promotes seed dormancy by inhibiting cell growth. It is also involved in opening and closing of stomata as leaves wilt.

Ethylene is a gas produced by ripe fruits. Why does one bad apple spoil the whole bunch? Ethylene is used to ripen crops at the same time. Sprayed on a field it will cause all fruits to ripen at the same time so they can be harvested.

No comments:

Post a Comment